Potential for visualising ultrafast structural changes in solution

Richard Neutze, Remco Wouts, Simone Techert, Jan Davidsson, Menhard Kocsis, Adam Kirrander, Friedrich Schotte & Michael Wulff.

Scientific Motivation

- Spectroscopy probes transitions between energy surfaces.
 - Must chart all accessible surfaces.
 - Unique interpretation problematic as complexity increases.
 - Thermal artifacts.
- Structure based pump-probe methods complementing fs spectroscopy potentially powerful.

Picosecond XAS

- Laser produced X-ray plasma source.
- Near edge absorption of SF₆ gas.
 - High-symmetry enhances K-edge ionisation cross-section.
 - Resonance disappears as SF₆
 dissociates.

- ullet ~ 1 ps temporal resolution.
 - Ráksi et al., J. Chem. Phys. (1996).

Sub-picosecond Multi-layer Diffraction

- Laser plasma X-ray probe.
- Langmuir-Blodget film.
 - Highly ordered & enables multilayer diffraction.
 - Rapidly disorders upon heating.
- ullet ~ 1 ps temporal resolution.
 - Rischel et al., Nature (1997).

Picosecond Powder Diffraction

- Monochromatic synchrotron radiation.
- N,N-dimethylaminobenzonitrile.
 - Diffraction quality powders.
 - Numerous diffraction peaks sampled simultaneously.
 - Detailed structural information.
- $\bullet \sim 80$ ps temporal-resolution.
 - Techert et al., Phys. Rev. Lett. (2000).

Nanosecond Laue Diffraction

- White synchrotron beam.
- Photolysis of MbCO.
 - Small ligand photo-dissociation
 & recombination reaction.
 - Sensitive to disordering.
- $\bullet \sim 7$ ns temporal resolution.
 - Srajer et al., Science (1996).

Picosecond Electron Scattering

- Pulsed electron beam.
- CH₂I₂ as prototype system.
 - Vacuum phase dissociation reaction.
 - Signal-to-noise challenging.
- ullet ~ 10 ps temporal-resolution.
 - Williamson $et \ al.$, Nature (1997).

Iodine's Photochemistry in Solution

$$I_2 + h\nu \rightarrow I + I \rightarrow I_2^* \rightarrow I_2$$

- Photo-dissociation.
- Solvent caging (< 2 ps).
- Geminate recombination & vibrational relaxation.
- Excited state lifetime ≈ 500 ps in CH_2CI_2 .

Historical Milestones

- Rabinovitch & Wood (1936):
 Proposed solvent enhanced geminate recombination.
- Chuang, Hoffman & Eisenthal (1974): Picosecond pump-probe experiment.
- Smith & Harris (1987): Consensus picture.
- Bergsma et al. (1986):
 Simulated a time-resolved diffuse X-ray scattering experiment.

Diffuse X-ray Scattering

- X-ray scattering dependent upon atomic spacing.
 - Perturb bond-lengths& perturb scattering.
- In solution average over all orientations.

Pump-probe X-ray Experiment

- 40 mMol l₂ in CH₂Cl₂.
- \bullet 25 μ J per 100 fs pulse.
- Monochromatic 80 ps
 X-ray pulses @ ESRF.
- CCD camera.
 - 15 minutes/exposure.

Analysis

→ Integrate in Rings
 ↓
 Subtract "laser off"
 from "laser on"
 ↓

Experimental Result

- Laser on vrs. Laser off.
 - Change in diffuse X-ray scattering observed.
 - $-\sim30$ % yield.
 - $-\sim 15$ % of product escaped the cage.

Summary

- $\bullet \Delta I/I \approx 2 \times 10^{-3}$.
 - Near the CCD camera's limits.
 - High Q information missing.
- Geminate yield: 25 %.
 Non-geminate yield: 5 %.

- Change in Atomic spacing 0.4 $Å\pm$ 0.2 Å.
- Proof of principle but not a time-resolved experiment.

Lock-in Detection Experiment

- 40 mMol l₂ in CH₂Cl₂.
- \bullet 20 μ J per 100 fs pulse.
- Monochromatic 80 ps
 X-ray pulses @ ESRF.
- Gas filled detector & apply lock-in technique.

Experimental Result

- Laser on vrs. Laser off.
 - Change in diffuse X-ray scattering observed.
 - $-\sim 500$ ps time constant.

Summary

- Time-resolved signal recoverable.
- Limited by X-ray flux.
 - Use 1 % bandwidth X-ray optics.
- Laser & X-ray overlap critical.
 - Higher laser flux.

- One-dimensional experiment.
 - Multi-ring detector & simultaneously follow dynamics & diffuse scattering profile.

4th Generation X-ray Sources

- 100 fs X-ray pulses.
 - Domain of ultrafast photochemistry.
- - Eight orders of magnitude improvement on this experiment.
 - Improve signal to noise.
 - Reduce integration times.
 - More complex systems.

Technical Experimental Targets

- Pulse length \leq 100 fs.
 - Synchronization?
 - Time arrival & read detector every pulse?
- 10¹² photon/pulse @ 100 Hz.
 - Resolve $\Delta I/I \leq 10^{-4}$.
 - Detector stability?
 - An enclosed flow cell/detector.
- Beam stability.
 - Seeding?
 - Spectrally resolve every pulse?

Proof of Principle Experiment

- l₂ in ethelyene glycole.
 - Absorption max \approx 400 nm.
 - Solvent caging \approx 600 fs.
 - Vibrational relaxation ≈ 20 ps.
- Scientific interest:
 - Clock solvent cage formation.
 - Follow cage-breakout.
 - Coherent reaction dynamics in solution (oscillation period \approx 300 fs).

More Complex Structural Dynamics

- A kaliediscope of photoactive small-molecules.
 - Unambiguous structural signal.
 - Complement fs spectroscopy.
- Scientific interest:
 - Distinguish reaction pathways.
 - Branching ratios.
 - Influence of solvent.

Membrane Proteins

- Semi-ordered X-ray scattering.
 - Stacked bilayers.
- Halorhodopsin.
 - Visualise chloride pumping.
- Bacterial Reaction Centres.
 - Coherent low frequency motions observed.
 - Coupled to electron transport?
 - Structurally characterise these motions.

Conclusions

- State of the Art.
 - Transient structural changes in solution observable with ~ 100 ps resolution.
- Impact of an X-ray FEL.
 - Dramatically improve temporal resolution
 & signal-to-noise.
 - Detector & sample stability crucial.
 - Potential for exciting science.

Acknowledgements

Uppsala

Remco Wouts
Jan Davidsson
Adam Kirrander
Hans Petersson
Janos Hajdu

ESRF

Simone Techert
Friedrich Schotte
Menhard Kocsis
Anton Plech
Harald Müller
Michael Wulff